

SAFE RELIABLE UNIVERSAL

THE ORIGINAL ATRAUMATIC RLN ELECTRODE

- Patented Laryngeal Surface Electrodes
- Universal Function and Compatibility^{1,2}
- Detect and Assess Vagus Nerve Integrity
- Reliable EMG Signals and Real-Time Feedback³
- 1-Channel and 2-Channel Designs Available
- RLN Monitoring on ET Tube Sizes 2.5 10.0 mm⁴

KEY FEATURES

- Atraumatic electrode is flexible and easy to use with preferred ET tube
- Innovative design accommodates the size of the selected ET tube^{1,3}, including half sizes
- Depth markings guide placement for ideal positioning for EMG data collection
- Compatible with most IONM systems to record free-run and evoked EMG activity¹⁻⁴

ORDERING INFORMATION:

DRAGONFLY® UNIVERSAL INTRAOPERATIVE RLN MONITORING

Item Code	Description: EMG Electrodes for Endotracheal Tubes, Box of 5
LSE600MSP-5	Dragonfly EasyAim® 1-Channel Kit, EMG Electrode for ET Tube 2.5-5 mm (requires reference electrode)
LSE600M-5	Dragonfly EasyAim® 1-Channel Kit, EMG Electrode for ET Tube 6-10 mm (requires reference electrode)
LSE500MS-5	Dragonfly 1-Channel, EMG Electrode for ET Tube 6-7 mm
LSE500M-5	Dragonfly 1-Channel, EMG Electrode for ET Tube 7.5-10 mm
LSE500DCS-5	Dragonfly 2-Channel, EMG Electrode for ET Tube 6-7.5 mm
LSE500DCL-5	Dragonfly 2-Channel, EMG Electrode for ET Tube 8-10 mm

^{1.} Chiu, Peter, et al. "Aortic elongation and bronchial splint for late bronchial complication after neonatal arch reconstruction." JTCVS techniques 8 (2021): 126-128.

^{2.} Crowther, Jason E., et al. "Intraoperative neuromonitoring during thyroid surgery: the effect of surgical positioning." Surgical Innovation 26.1 (2019): 77-81.

^{3.} Lawlor, Claire M., et al. "Recurrent laryngeal nerve monitoring in pediatric surgery using a modified dragonfly electrode." The Laryngoscope 131.11 (2021): 2586-2589.

^{4.} White, W. Matthew, et al. "RLN monitoring during thyroidectomy and related cervical procedures in the pediatric population." Arch of Otolaryngology Head Neck Surg. 135.1 (2009): 88-94.